Greibach Normal Form

Conversion of a Chomsky normal form grammar to Greibach normal form

DEFINITION

A CFG is in Greibach normal form if each rule has one these forms:

```
i. A}->a\mp@subsup{A}{1}{}\mp@subsup{A}{2}{}\ldots..\mp@subsup{A}{n}{
ii. }\quadA->
iii. S->\lambda
```

where $a \in \Sigma$ and $A_{i} \in \mathrm{~V}-\{S\}$ for $i=1,2, \ldots, n$

DEFINITION

- A CFG is in Chomsky normal form if each rule has one these forms:

```
i. }A->B
ii. }\quadA->
iii. S->\lambda
```

where $B, C \in \mathrm{~V}-\{S\}$

Conversion

- Convert from Chomsky to Greibach in two steps:

From Chomsky to intermediate grammar
a. Eliminate direct left recursion
b. Use $A \rightarrow u B v$ rules transformations to improve references (explained later)
2. From intermediate grammar into Greibach

Eliminate direct left recursion

- Before
$A \rightarrow A \underline{a} \mid b$
- After
$A \rightarrow \boldsymbol{b} Z \mid \boldsymbol{b}$
$Z \rightarrow \underline{a} Z \mid \underline{a}$

Remove the rule with direct left recursion, and create a new one with recursion on the right

Eliminate direct left recursion

- Before

$$
A \rightarrow A \underline{a}|A \underline{b}| \boldsymbol{b} \mid \boldsymbol{c}
$$

- After

$$
\begin{aligned}
& A \rightarrow b Z|c Z| b \mid c \\
& Z \rightarrow \underline{a} Z|\underline{b} \backslash| \underline{a} \mid b
\end{aligned}
$$

Remove the rules with direct left recursion, and create new ones with recursion on the right

Eliminate direct left recursion

- Before
$A \rightarrow A \underline{B}|B A| a$
$B \rightarrow b \mid c$

TRANSFORM $A \rightarrow$ UBV RULES

- Before
$A \rightarrow u B b$
$B \rightarrow w_{1}\left|w_{1}\right| \ldots \mid w_{n}$
- After

Add $A \rightarrow u w_{1} b\left|u w_{1} b\right| \ldots \mid u w_{n} b$
Delete $A \rightarrow u B b$

Conversion: Step 1

- Goal: construct intermediate grammar in this format

```
i. }A->a
ii.}A->B
iii. S S \lambda
```

where $w \in \mathrm{~V}^{*}$ and B comes after A

Conversion: Step 1

- Assign a number to all variables starting with S, which gets 1
- Transform each rule following the order according to given number from lowest to highest
- Eliminate direct left recursion
- If RHS of rule starts with variable with lower order, apply $A \rightarrow u B b$ transformation to fix it

Conversion: Step 2

- Goal: construct Greibach grammar out of intermediate grammar from step 1
- Fix $A \rightarrow B w$ rules into $A \rightarrow$ aw format
- After step 1, last original variable should have all its rules starting with a terminal
- Working from bottom to top, fix all original variables using $A \rightarrow u B b$ transformation technique, so all rules become A \rightarrow aw
- Fix introduced recursive rules same way

Conversion Example

- Convert the following grammar from Chomsky normal form, into Greibach normal form

1. $S \rightarrow A B \mid \lambda$
2. $A \rightarrow A B|C B| a$
3. $B \rightarrow A B \mid b$
4. $C \rightarrow A C \mid C$

Conversion Strategy

- Goal: transform all rules which RHS does not start with a terminal
- Apply two steps conversion
- Work rules in sequence, eliminating direct left recursion, and enforcing variable reference to higher given number
- Fix all original rules, then new ones

Step 1: S rules

- Starting with S since it has a value to of 1
- $S \rightarrow A B \mid \lambda$
- S rules comply with two required conditions
- There is no direct left recursion
- Referenced rules A and B have a given number higher than 1 . A corresponds to 2 and B to 3 .

Step 1: A RULES

- $A \rightarrow A \underline{B}|C B| a$
- Direct left recursive rule $A \rightarrow A B$ needs to be fixed. Other A rules are fine
- Apply direct left recursion transformation
$A \rightarrow C B \underline{R}_{1}\left|a \underline{R}_{1} / C B\right| a$
$R_{1} \rightarrow \underline{B} R_{1} \mid \underline{B}$

Step 1: B RULES

- $B \rightarrow \underline{A} \boldsymbol{B} \mid b$
- $B \rightarrow A B$ rule needs to be fixed since B corresponds to 3 and A to 2 . B rules can only have on their RHS variables with number equal or higher. Use $A \rightarrow$ $u B b$ transformation technique
- $B \rightarrow \underline{C B R_{1}} \boldsymbol{B}\left|\underline{a R_{1}} \boldsymbol{B}\right| \underline{C B} B|\underline{a} B| b$

Step 1: C RULES

- $C \rightarrow \underline{A C \mid C}$
- $C \rightarrow A C$ rule needs to be fixed since C corresponds to 4 and A to 2 . Use same $A \rightarrow u B b$ transformation technique
- $C \rightarrow \underline{C B R_{1}} C\left|\underline{a R_{1}} C / \underline{C B C}\right| \underline{a} C \mid C$
- Now variable references are fine according to given number, but we introduced direct left recursion in two rules...

Step 1: C RULES

- $C \rightarrow C \underline{B R_{1}} \underline{C}\left|a R_{1} C / C \underline{B C}\right| a C \mid c$
- Eliminate direct left recursion $C \rightarrow a R_{1} C \underline{R}_{\underline{2}} / a C \underline{R}_{2}\left|c \underline{R}_{2} / a R_{1} C / a C\right| c$ $R_{2} \rightarrow \underline{B R_{1}} \underline{\underline{C}} R_{2}\left|\underline{B C} R_{2}\right| \underline{B R_{1}} \underline{C} \mid \underline{B C}$

Step 1: Intermediate grammar

- $S \rightarrow A B \mid \lambda$
- $A \rightarrow C B R_{1}\left|a R_{1}\right| C B \mid a$
- $B \rightarrow C B R_{1} B\left|a R_{1} B\right| C B B|a B| b$
- $C \rightarrow a R_{1} C R_{2} / a C R_{2}\left|c R_{2} / a R_{1} C / a C\right| c$
- $R_{1} \rightarrow B R_{1} \mid B$
- $R_{2} \rightarrow B R_{1} C R_{2}\left|B C R_{2}\right| B R_{1} C \mid B C$

Step 2: FIX STARTING SYMBOL

- Rules S, A, B and C don't have direct left recursion, and RHS variables are of higher number
- All C rules start with terminal symbol
- Proceed to fix rules B, A and S in bottom-up order, so they start with terminal symbol.
- Use $A \rightarrow u B b$ transformation technique

Step 2: Fixing B RULES

- Before
$B \rightarrow \underline{C} B R_{1} \mathbf{B}\left|a R_{1} B\right| \underline{C} B \mathbf{B}|a B| b$
- After

$$
\begin{aligned}
& B \rightarrow a R_{1} B|a B| b \\
& B \rightarrow \underline{a R_{1}} \underline{C R_{2}} B R_{1} B / a C R_{2} B R_{1} B \mid \underline{c R_{2}} B R_{1} B / a R_{1} \underline{C} B R_{1} B / \\
& \underline{a C B R_{1}} B \mid \underline{c} B R_{1} B \\
& B \rightarrow \underline{a R_{1}} \underline{C R_{2}} B B / \underline{a C R}_{2} B B\left|\underline{c R_{2}} B B / \underline{a R_{1}} \underline{C} B B / \underline{a C} B B\right| \\
& \underline{c} B B
\end{aligned}
$$

Step 2: Fixing A RUles

- Before
$A \rightarrow \underline{C} B R_{1}\left|a R_{1}\right| \underline{C} B \mid a$
- After
$A \rightarrow a R_{1} \mid a$
$A \rightarrow \underline{a R_{1}} \underline{C R_{2}} B R_{1}\left|\underline{a C R_{2}} B R_{1}\right| \underline{c R_{2}} B R_{1}\left|\underline{a} R_{1} C B R_{1}\right| \underline{a C B R}$ $\mid \underline{c} B R_{1}$
$A \rightarrow \underline{a R_{1}} \underline{\underline{C R}} \underline{2}_{\underline{2}} B / \underline{a C R_{2}} B\left|\underline{c R_{\underline{2}}} B / \underline{a} R_{1} \underline{C} B / \underline{a C} B\right| \underline{\underline{c}} B$

Step 2: Fixing S RUles

- Before
$S \rightarrow \underline{A B} \mid \lambda$
- After
$S \rightarrow \lambda$
$S \rightarrow \underline{a R_{1}} B \mid \underline{a} B$
$\mathrm{S} \rightarrow \underline{a R}_{1} \underline{C R_{2}} \underline{B R}_{1} B\left|a C R_{2} \underline{B R_{1}} B\right| \underline{c} R_{2} \underline{B R_{1}} B /$ $a R_{1} C \bar{B} R_{1} B / \vec{a} C B R_{1} B \mid \underline{C B R_{1}} B$
$\mathrm{S} \rightarrow \underline{a R_{1}} \underline{C R_{2}} \underline{B} B / \underline{a C R}_{2} \underline{B} B \mid \underline{c} R_{2} \underline{B} B / a R_{1} C B B /$ $a C B B \mid \underline{C B} B$

Step 2: Complete conversion

- All original rules S, A, B and C are fully converted now
- New recursive rules need to be converted next $R_{1} \rightarrow B R_{1} \mid B$
$R_{2} \rightarrow B R_{1} C R_{2}\left|B C R_{2}\right| B R_{1} C \mid B C$
- Use same $A \rightarrow u B b$ transformation technique replacing starting variable B

CONCLUSIONS

- After conversion, since B has 15 rules, and R_{1} references B twice, R_{1} ends with 30 rules
- Similar for R_{2} which references B four times. Therefore, R_{2} ends with 60 rules
- All rules start with a terminal symbol (with the exception of $S \rightarrow \lambda$)
- Parsing algorithms top-down or bottom-up would complete on a grammar converted to Greibach normal form

