
GREIBACH NORMAL FORM

Conversion of a Chomsky normal form grammar to

Greibach normal form

DEFINITION

 A CFG is in Greibach normal form if each rule

has one these forms:

i. A aA1A2…An

ii. A a

iii. S

where a and Ai V – {S} for i = 1, 2,…, n

DEFINITION

 A CFG is in Chomsky normal form if each rule

has one these forms:

i. A BC

ii. A a

iii. S

where B, C V – {S}

CONVERSION

 Convert from Chomsky to Greibach in two steps:

1. From Chomsky to intermediate grammar

a. Eliminate direct left recursion

b. Use A uBv rules transformations to improve

references (explained later)

2. From intermediate grammar into Greibach

ELIMINATE DIRECT LEFT RECURSION

 Before

A Aa | b

 After

A bZ | b

Z aZ | a

 Remove the rule with direct left recursion, and
create a new one with recursion on the right

ELIMINATE DIRECT LEFT RECURSION

 Before

A Aa | Ab | b | c

 After

A bZ | cZ | b | c

Z aZ | bZ | a | b

 Remove the rules with direct left recursion, and
create new ones with recursion on the right

ELIMINATE DIRECT LEFT RECURSION

 Before

A AB | BA | a

B b | c

 After

A BAZ | aZ | BA | a

Z BZ | B

B b | c

TRANSFORM A UBV RULES

 Before

A uBb

B w1 | w1 |…| wn

 After

Add A uw1b | uw1b |…| uwnb

Delete A uBb

CONVERSION: STEP 1

 Goal: construct intermediate grammar in this

format

i. A aw

ii. A Bw

iii. S

where w V* and B comes after A

CONVERSION: STEP 1

 Assign a number to all variables starting with S,

which gets 1

 Transform each rule following the order according

to given number from lowest to highest

 Eliminate direct left recursion

 If RHS of rule starts with variable with lower order, apply

A uBb transformation to fix it

CONVERSION: STEP 2

 Goal: construct Greibach grammar out of intermediate

grammar from step 1

 Fix A Bw rules into A aw format

 After step 1, last original variable should have all its rules

starting with a terminal

 Working from bottom to top, fix all original variables using

A uBb transformation technique, so all rules become A

 aw

 Fix introduced recursive rules same way

CONVERSION EXAMPLE

 Convert the following grammar from Chomsky

normal form, into Greibach normal form

1. S AB |

2. A AB | CB | a

3. B AB | b

4. C AC | c

CONVERSION STRATEGY

 Goal: transform all rules which RHS does not start

with a terminal

 Apply two steps conversion

 Work rules in sequence, eliminating direct left

recursion, and enforcing variable reference to

higher given number

 Fix all original rules, then new ones

STEP 1: S RULES

 Starting with S since it has a value to of 1

 S AB |

 S rules comply with two required conditions

 There is no direct left recursion

 Referenced rules A and B have a given number higher

than 1. A corresponds to 2 and B to 3.

STEP 1: A RULES

 A AB | CB | a

 Direct left recursive rule A AB needs to be fixed.

Other A rules are fine

 Apply direct left recursion transformation

A CBR1 | aR1 | CB | a

R1 BR1 | B

STEP 1: B RULES

 B AB | b

 B AB rule needs to be fixed since B corresponds

to 3 and A to 2. B rules can only have on their RHS

variables with number equal or higher. Use A

uBb transformation technique

 B CBR1B | aR1B | CBB | aB | b

STEP 1: C RULES

 C AC | c

 C AC rule needs to be fixed since C corresponds

to 4 and A to 2. Use same A uBb transformation

technique

 C CBR1C | aR1C | CBC | aC | c

 Now variable references are fine according to given

number, but we introduced direct left recursion in two

rules…

STEP 1: C RULES

 C CBR1C | aR1C | CBC | aC | c

 Eliminate direct left recursion

C aR1CR2 | aCR2 | cR2 | aR1C | aC | c

R2 BR1CR2 | BCR2 | BR1C | BC

STEP 1: INTERMEDIATE GRAMMAR

 S AB |

 A CBR1 | aR1 | CB | a

 B CBR1B | aR1B | CBB | aB | b

 C aR1CR2 | aCR2 | cR2 | aR1C | aC | c

 R1 BR1 | B

 R2 BR1CR2 | BCR2 | BR1C | BC

STEP 2: FIX STARTING SYMBOL

 Rules S, A, B and C don’t have direct left recursion,

and RHS variables are of higher number

 All C rules start with terminal symbol

 Proceed to fix rules B, A and S in bottom-up order,

so they start with terminal symbol.

 Use A uBb transformation technique

STEP 2: FIXING B RULES

 Before

B CBR1B | aR1B | CBB | aB | b

 After

B aR1B | aB | b

B aR1CR2BR1B | aCR2BR1B | cR2BR1B | aR1CBR1B |

aCBR1B | cBR1B

B aR1CR2BB | aCR2BB | cR2BB | aR1CBB | aCBB |

cBB

STEP 2: FIXING A RULES

 Before

A CBR1 | aR1 | CB | a

 After

A aR1 | a

A aR1CR2BR1 | aCR2BR1 | cR2BR1 | aR1CBR1 | aCBR1

| cBR1

A aR1CR2B | aCR2B | cR2B | aR1CB | aCB | cB

STEP 2: FIXING S RULES

Before

S AB |

After

S

S aR1B | aB

S aR1CR2BR1B | aCR2BR1B | cR2BR1B |

aR1CBR1B | aCBR1B | cBR1B

S aR1CR2BB | aCR2BB | cR2BB | aR1CBB |

aCBB | cBB

STEP 2: COMPLETE CONVERSION

 All original rules S, A, B and C are fully converted
now

 New recursive rules need to be converted next

R1 BR1 | B

R2 BR1CR2 | BCR2 | BR1C | BC

 Use same A uBb transformation technique
replacing starting variable B

CONCLUSIONS

After conversion, since B has 15 rules, and
R1 references B twice, R1 ends with 30 rules

Similar for R2 which references B four times.
Therefore, R2 ends with 60 rules

All rules start with a terminal symbol (with
the exception of S)

Parsing algorithms top-down or bottom-up
would complete on a grammar converted to
Greibach normal form

